
Software and Middleware Technologies based on Open APIs and Protocols for modern
Service Provision in Telecoms

Nikolaos D. Tselikas
Department of Telecommunications

Science and Technology
University of Peloponnese

Tripoli, Greece
ntsel@uop.gr

George S. Tselikis
4Plus Technologies S.A.

Athens, Greece
tselikis@4plus.com

Nikos C. Sagias
Department of Telecommunications

Science and Technology
University of Peloponnese

Tripoli, Greece
nsagias@ieee.org

Abstract— The presence of software and middleware technologies
based on open APIs and protocols for advanced service provision
in telecoms is the main subject of this article. Specifically, the role
and the trade-off between open APIs and Protocols, i.e.
OSA/Parlay APIs, JAIN APIs and SIP, in modern telecoms are
addressed. We present a technical implementation analysis,
based on a call-related telecom service, in order to set a common
basis for the aforementioned technologies, since – either way –
“voice” is still a common denominator for Fixed and Mobile
Operators as well as for Internet Service Providers too. We
summarize with a performance evaluation study regarding the
implemented services.

Keywords-service provision; middleware technologies; open
APIs; OSA/Parlay; JAIN; SIP; performance evaluation;

I. INTRODUCTION
The persistent demand of more and richer value added

services is an exceptional revenue opportunity for network
operators. Traffic flowing through their network will increase
as more and more services for end users become available.
However, network operators are not able by themselves to
deploy in their networks services as fast as demand requires;
core network interactions tend to be complex, so integrating
services right in the network core and, most importantly,
requiring network operators to administer and maintain those
services after deployment, inevitably becomes a slow and
cumbersome procedure. Rapid service creation and deployment
is achieved only if service development, deployment and
administration are distributed among external service
providers. The only way to achieve such a distribution is for
network operators to expose parts of their networks core
functions to third-party providers.

Providing access to core network functions requires
compromises from both sides, in order to address the concerns
raised by both of them. Network operators are concerned about
security and stability, so they require control on the admitted
interactions, while service providers are concerned with the
effort required to develop new services and whether their
investment in the developed software will be reusable in other
operators. In the interests of both, interaction with the network
should be simple to comprehend and implement, it should
require minimal development and integration effort and the
result should be reusable, in order to protect the investment.

The proper way to address these concerns is by drawing
clear and simple interfaces between operators and providers.

These interfaces project a simplified model of core network
functions and are standardized to allow reusability and
independence from underlying network architectures. Such
interfaces can be implemented choosing from a variety of
communication middleware technologies; most notably
distributed object based systems (RMI, CORBA, SOAP with
RPC semantics) or messaging frameworks like Java Message
Service (JMS).

The primary concern in this approach has always been the
performance impact inflicted by the additional middleware
layers compared to the straightforward case of deploying
services straight into the core network. To this purpose, a
performance comparison of various middleware technologies
supporting open interfaces is an interesting step before
choosing the most appropriate communication middleware to
implement an open interface for a specific value added service.
This is also the objective of this paper; to provide a deep
investigation and an efficient performance comparison between
several similar middleware systems based on open APIs and
Protocols for Service Provisioning.

The rest of the paper is organized as follows. The second
section cites the state of the art of the most useable open APIs
and protocols in service provision. The third section analyzes a
part of the implementation of an Advanced Call Control
Gateway, by trying to set a common basis, in order to render
feasible a performance comparison between different platforms
and technologies, through a call-related service and how this
service can be implemented based on different open APIs and
middleware technologies (i.e. OSA/Parlay API, JAIN API and
SIP), since “voice” is for sure a common denominator for
either Fixed or Mobile Operator or an Internet Service
Provider. The paper is summarized with the most remarkable
conclusions.

II. OPEN APIS AND PROTOCOLS IN TELECOMS
Last years, a new kind of player in Telecom Market has been

appeared into the foreground. Apart from the Network
Operator, which used to own both the core Network and the
Services, Independent Service Providers (ISPs) are playing an
increasing role in modern telecommunications by using
existing network infrastructures to provide services under their
own management. As a result, the final link of the
telecommunication market’s chain, i.e. the users, are
theoretically able to select the services and applications they

2010 14th Panhellenic Conference on Informatics

978-0-7695-4172-3/10 $26.00 © 2010 IEEE

DOI 10.1109/PCI.2010.21

33

really need or like among a big range of services offered by
different Service Providers and Network Operators.

In order satisfy users’ demand for new and advanced
services, a different approach has been followed in the last
years regarding service provisioning. This new approach is not
another vertical one, but tends to be applied as horizontal as
possible, covering and hiding the underlying network
peculiarities in the service plane by exposing only the actual
necessary functionality for creation and provision of new
services. This is offered by the so-called Service Platforms,
which operate over different network infrastructures. They are
responsible for service deployment, manipulation, control and
provision, while they provide the basis for external service
creation by Independent Service Developers and Providers.
Service platforms achieve communication transparency by
exploiting middleware technologies like CORBA, Java-RMI,
Web Services technologies etc. Moreover, a standards-based
approach in such a platform is imperative for providing
Independent Service Providers with homogeneous access to the
underlying network resources. These standards must be open,
flexible and easily programmable for everyone, thus heavy and
maladjusted protocols are avoided in Service Platforms
implementations. On the other hand, open Application
Programming Interfaces (APIs), such as OSA/Parlay and Java
APIs for Integrated Networks (JAIN) or standard Internet-
based Protocols like Session Initiation Protocol (SIP) are
preferred in many implementations, due to the pre-mentioned
advantages [1].

OSA/Parlay constitutes a prominent forum that
acknowledges the importance of designing APIs for
telecommunications capabilities (The Parlay Group). The
Parlay APIs specifications have been developed and defined,
allowing services and applications to access transparently the
core network functionality. In mobile world, 3rd Generation
Partnership Project (3GPP) adopted Parlay specifications
preparative to specify, define and create Parlay-like APIs for
the support of service development on top of mobile networks
[2]. This initiative is known as OSA Interface, or just OSA
(Open Service Access). After the release of Parlay APIs
version 3.0, Parlay and OSA amalgamated in the same forum.
That’s why it is nowadays known with the combined name
“OSA/Parlay”. OSA/Parlay provides 3rd parties with
programming interfaces (both IDL and WSDL) that are open,
language and platform independent, and include security
provisions. Thus OSA/Parlay APIs can be supported on top of
various middleware technologies and protocols such as
CORBA (Common Object Request Broker Application),
DCOM, Java-RMI and Web Services with Simple Object
Access Protocol (SOAP).

Java APIs for Integrated Networks (JAIN) is defined and
specified by a large number of participating telecommunication
firms, the so-called JAIN Community [3]. The JAIN
Community envisioned the creation of a number of open Java
APIs that abstract the details of networks and protocol
implementations, in order to ease the development of portable
applications. JAIN provides a Java-based framework to build
and integrate services and solutions that span across both

packet- and circuit- switched networks. This was the major
scope for the creation of the JAIN Protocol Experts Group
(PEG). JAIN PEG focuses on developing Java APIs for
protocols used in telephony, intelligent networks (INs),
wireless networks, and the Internet. JAIN PEG is organized
into two major divisions; the Signaling System No. 7 (SS7)
subgroup and the Internet Protocol (IP) subgroup. The former
focuses on developing Java APIs for SS7 technology – mainly
used in telephony, IN, and wireless networks, while the latter
focuses on developing Java APIs for Internet technologies.
Within each subgroup there are Edit Groups that focus on
specific protocols. Inspired by OSA/Parlay forum, but strictly
in the context of the Java language, the main objective of JAIN
is to provide service portability, convergence, and secure
access (by services residing outside of the network) to such
integrated networks, while the ultimate target of the JAIN
Community is to create an open market for services across
integrated networks using the already widely accepted Java
technology [4].

Session Initiation Protocol (SIP) is an application layer text-
based protocol standardized by the Internet Engineering Task
Force (IETF) in early 1999 [5]. It is used for session initiation,
modification and termination between two or more terminals.
Applications based on SIP focus on interactive multimedia
sessions, such as Internet phone calls or multimedia
conferences, while it can also be used for instant messaging,
event notification or managing other session types, such as
distributed games. In setting up sessions, SIP acts as a
signaling protocol, offering services similar to telephony
signaling protocols such as Q.931 or ISUP, but in an Internet
context. SIP uses also existing IETF protocols to support
various applications (e.g. voice, presence and call control). In
combination with the Session Description Protocol (SDP) [6],
SIP can describe the session characteristics, while, at the same
time, signaling and media streams are separated. Due to its
flexibility, many extensions have been proposed for
enhancement of the supported functionalities. SIP, in
conjunction with the proposed extensions, supports many call
control services, such as Call Fordwarding, Call Transfer, Call
Hold, Call Waiting, Call Identification, Conferencing and
Third Party Call Control, as well as new Internet-based
services like Click-to-Dial, capability exchange, distributed
gaming, messaging and presence. Because of its increased
simplicity in implementation – in contrast to H.323 – SIP is the
dominant architecture for VoIP telephony [7].

Open APIs and standard protocols have already penetrated in
the Telecom Market. Vendors such as Ericsson, Siemens,
Alcatel and Aepona have already incorporate OSA/Parlay APIs
in their Service Platforms, i.e. Jambala, @dvantage, A-8601
and Causeway Parlay Gateway respectively [8-11]. Open
Cloud and Sun implement JAIN in their corresponding Service
Platforms Rhino and jNETx, while the latter actually
implements both JAIN and OSA/Parlay APIs in parallel [12].
On the other hand, SIP is the referential protocol in the IP
Multimedia Subsystem (IMS), which is an architectural
framework for delivering internet protocol (IP) multimedia to
mobile users. IMS was originally designed by the wireless

34

standards body 3rd Generation Partnership Project (3GPP), and
is part of the vision for evolving mobile networks beyond GSM
and GPRS, such as WLANs, 3G and fixed line. All the
aforementioned vendors provide in parallel SIP-based service
platforms. Siemens (Nokia Siemens Networks since 2007) has
extended the Parlay @vantage Service Platform to
IMS@dvantage supporting SIP too [9].

Such service platforms – or even middleware
implementations developed from scratch – based on SIP or on
open APIs like OSA/Parlay or JAIN, are used to create a cost-
effective and highly-flexible IP-based infrastructure, in order to
deliver revenue generating services for the convergence of
data, voice and mobile network technologies, as required in
Next Generation Networks.

Regarding the Network Operators’ and Service Providers’
concern of making new and advanced services in an open,
easier and more rapid manner, this kind of approach seems
suitable [13]. However, there are performance implications
regarding middleware and the implemented open-API, when a
new service is deployed towards the end-users. Subscribers are
always impatient. They demand services that respond as fast as
possible with the minimum possible delay. But, advanced
services may include several interactions between different
network and application entities, which are – sometimes –
generated in real time introducing big delays.

III. IMPLEMENTATION ASPECTS
In this section we describe and analyze a middleware

implementation based on a subset of all three pre-mentioned
technologies, i.e. OSA/Parlay APIs, JAIN APIs and SIP,
regarding call control functionality. The subsets of APIs are the
Generic Call Control (GCC) API and the JAIN Call Control
(JCC) API for OSA/Parlay and JAIN respectively.
Performance evaluation results are also analyzed, in order to
define whether (or not) an open API based middleware solution
or SIP can be a consistent advocate of performance. A simple
call-related service is examined to indicate the service response
time by using the pre-mentioned solutions. The performance
analysis is not based on the service processing time (which
depends directly on the service logic and thus is varying), but
on the estimation of the raw performance of an open API based
middleware or SIP stack implementation. This is actually the
reason for not examining a more complex and advanced
service. The observation of a limited performance for such a
simple call-control service renders prohibitive the future
expectations for real advanced services based on open API
middleware solutions or SIP. Contrariwise, positive results can
provide further boost in this service engineering trend.

Based on the rationale described in the previous section,
different implementations – realizing an advanced Call Control
Gateway, based on different open APIs or SIP –will be
presented, analyzed and evaluated. The advanced Call Control
Gateway relies in parallel on all three types of Call Control, i.e.
OSA/Parlay Generic Call Control, JAIN Call Control APIs and
SIP Call Control. All three implementations have been tested
regarding their performance over a commercial Vocaltec’s
Softswitch, for applying call related services in a pure SIP-

based VoIP network [14]. Similar Gateway implementations
can be applied for both PSTN and PLMN access nodes, to
certify the layer of abstraction provided by the usage of open
APIs in fixed or mobile communication networks. Figure 1
presents a high level view of the service layer used during our
experiments for the VoIP network.

Figure 1: A high-level view of the reference implementation

The Call Control Gateway mediates between the VoIP
Softswitch and the Application Server and communicates via
SIP with the former and via open APIs (OSA/Parlay and JAIN
respectively) or directly via SIP with the latter. For the
experimental purposes, services residing in the Application
Server are triplicated supporting OSA/Parlay, JAIN and SIP.

The first part of the functionality of the advanced Call
Control Gateway adopts the OSA/Parlay Generic Call Control
Service and specifically the Generic Call Control API. The
selection of Generic Call Control API (version 4.1) depends on
the requirements of the services that are going to be offered.
Since the target is not to provide a very complex service, but to
evaluate the performance of the open API middleware
implementation, the implementation of a simple service is
more than enough for the experimental part of the study. For
offering more advanced and complicated services Multiparty or
Conference Call Control API can be implemented instead of
Generic Call Control API.

OSA/Parlay APIs are divided in two parts, called “sides”,
namely the Network Side API and the Application Side API
respectively. The former is implemented in the Gateway, while
the latter is implemented in the Application Server and is
offered by the actual services. The Call Control model of
OSA/Parlay is based on the traditional IN call model. The
requirement for the implementation of the Generic Call Control
API is to provide two interfaces on the Network Side, namely
the IpCallControlManager and the IpCall.

From an implementation point of view, the two Network
Side interfaces can be considered as two CORBA or RMI

35

servers exposing their methods to the Application Part, since
OSA/Parlay provides the corresponding interfaces’ definitions
in IDL (Interface Definition Language). They can also be
considered as Web Services, since the same interfaces are also
available in WSDL (Web Service Definition Language) by
OSA/Parlay. Actually, the two Network Side objects
(IpCallControlManager and IpCall), constitute the
OSA/Parlay part of the Call Control Gateway, which is
responsible to provide an OSA/Parlay-oriented view of
network resources and observe the respective Application Side
OSA/Parlay objects as foreseen by the signatures of their
methods. The latter are the IpAppCallControlManager and
IpAppCall, exposing the callback methods to the Network
Side ones. Briefly, the most common of them are: the
IpAppCallControlManager::callEventNotify()
method, which notifies the application of the arrival of a call
related event, the IpAppCall::routeRes() method,
indicating that the routing request to the destination party was
successful, and finally the IpAppCall::routeErr()
method, which indicates that the routing request to the
destination party was unsuccessful, as well as the
corresponding reason. Figure 2 gives the picture of the
OSA/Parlay part of the advanced Call Control Gateway in
terms of a UML class diagram, while Figure 3 depicts the
sequence diagram of the implemented “Call Forwarding
Service”, which clarifies the interaction between Generic Call
Control Interface’s objects.

Figure 2: UML class diagram of OSA/Parlay GCC API implementation

Further technical details regarding the afore-mentioned
implementation as well as the implementation of the rest part
of the Call Control Gateway implementation, can be found in
[14].

IV. PERFORMANCE EVALUATION STUDY
This section is a kind of performance evaluation for the

different service implementations. An indicative criterion
useful for a direct comparison between all the three afore-
mentioned implementations is the mean value of the measured

total time for a whole life cycle of a service request (totalt).
The whole life cycle of a service request is defined as the
required time period assuming as start-time-point the arrival of

a SIP request in the Softswitch and as corresponding end-time-
point the successful response (by the Service Logic) arrival in

the Softswitch respectively. totalt is estimated for the
following cases, as described in the previous subsections, i.e.
OSA/Parlay API using CORBA, OSA/Parlay API using RMI,
JAIN API using RMI and plain SIP implementations
respectively. The used model for the generation and arrival of
service requests is based on the Poisson distribution.

Figure 3: UML sequence diagram of OSA/Parlay-based execution of “Call

Forwarding” service

Five reasonable classes of different request rates have been
taken into account, representing the λ-value of Poisson rate.
These are 20, 40, 60, 80 and 100 service requests per minute
respectively. It is mentioned that each experiment lasted about
three hours, in order to conclude to as much reliable results as
possible, using the Poisson distribution.

The cluster columns chart in Figure 4 presents the mean total
serving time of each one of the five different rates’ experiments
for all four cases (usage of OSA/Parlay Call Control API over
CORBA and RMI respectively, usage of JAIN JCC API over
RMI and usage of plain SIP). For lower traffic loads (i.e. 20, 40
and 60 requests per minute) JAIN JCC API over RMI is
presented as the most efficient implementation concerning

totalt , while both SIP and CORBA implementations of
OSA/Parlay GCC API are following and the corresponding
RMI-based comes last. For higher traffic loads (i.e. 80 and 100
requests per minute) SIP implementation seems to be the most
efficient, followed by JAIN and OSA/Parlay over CORBA and
RMI in the row.

An important observation is that for all three middleware
based implementations, i.e. the implementations based on

OSA/Parlay and JAIN API, totalt is increased when the arrival
request rate is increased. Exactly the opposite happens in SIP
case. How can this paradox be explained? The communication
mechanism in all four cases has the same basis. For the
communication establishment over the RMI communication
link, actually JRMP is used, which is TCP/IP based. This
communication bus is used in two out of four experimental

36

cases (OSA/Parlay GCC API over RMI and JAIN JCC API
over RMI). In the third one (OSA/Parlay GCC API over
CORBA), the CORBA bus of IIOP is used, which is also
TCP/IP based.

0

10

20

30

40

50

60

20 40 60 80 100
arrival rate
(req/min)

tto
ta

l(m
se

c)

OSA/Parlay with CORBA OSA/Parlay with RMI
JAIN with RMI SIP

Figure 4: Mean Total Serving Time (totalt)

Finally, in SIP case TCP sockets are also used for the
communication. So the answer is not hiding in the
communication mechanism, but probably in the time required
in the three middleware-based cases to construct and de-
construct the SIP INVITE messages to OSA/Parlay and JAIN
methods and vice versa. JAIN JCC over RMI case needs less
time to construct the new structure of the JCC API method
against the corresponding of OSA/Parlay GCC API over RMI
one. This can be explained, because OSA/Parlay APIs’
methods contain more complicated data types and structures
than the ones JAIN JCC API uses. On the other hand, JAIN
JCC API is actually a Java-oriented implementation of
OSA/Parlay GCC API, thus it is expected to be designed for
RMI usage (RMI is a Java product too), while OSA/Parlay
does not indicate a particular underlying middleware
technology. In SIP case, no such a construction or de-
construction is needed. Furthermore, RMI and SIP present
better performance, because a more efficient socket
manipulation policy is used versus CORBA. A new RMI or
SIP connection can either open a new socket or reuse an
already opened one, which is currently idle [15]. An already
used RMI-socket stays alive for a few seconds. If – during this
time – a new RMI connection is required, the already alive
socket can be reused, saving time and recourses, instead of
opening a new one. Moreover, the possibility to meet a lot of
sockets alive is higher, when a lot of connections have been
already established. This is probably another reason justifying
the better performance of JAIN and SIP. Contrariwise, in
CORBA case, the underlying socket is destroyed after the
usage, thus every new request arrival requires the generation of
a new socket. Consequently, more time is spent for higher
traffic loads.

V. CONCLUSIONS
The paper describes the implementation of telecom services

based on open interfaces and standard protocols exposing call
control network functions. The current trend on service

provision in telecoms was presented. Finally, some basic
implementation issues as well as a performance evaluation
study based on mean values of time measurements were also
analyzed.

The most important conclusion one can draw from the
performance analysis is that the performance impact inflicted
by the use of a middleware layer implementing open interfaces
between the network and services is – without any doubt – an
acceptable overhead compared to the indisputable gains of
exposing network functionality through Open APIs. The use of
standardized interfaces to interact with the network is a
significant factor contributing transparency, modularity,
reusability and clear distribution of administrative
responsibilities to the service development process. This bears
significant gains for all those involved; network operators
increase the traffic and utilization of their networks through the
use of novel services developed by 3rd parties; the simplified
development and deployment process for services – transparent
to the network – spurs activity in the service provider world
and – as a consequence – users enjoy a large variety of value
added services.

REFERENCES
[1] Carvalho, R., P., & Alberti, A., M., “Java technologies for NGN service

creation: discussion and architecture to improve SIP addresses
discovery,” Internet and Multimedia Systems and Applications
Conference 2007, pp: 56 – 62.

[2] 3GPP: www.3gpp.org
[3] Java Technology, The JAIN initiative: http://java.sun.com/products/jain/
[4] Tait, D., Keijzer, J.D., Goerdman, R., “JAIN: A New Approach to

Services in Communication Networks,” IEEE Communications
Magazine, Vol. 38, Issue 1, Jan. 2000, pp. 94-99, doi:
10.1109/35.815458.

[5] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston A., Peterson, J.,
Sparks, R., Handley, M., Schooler, E., “SIP: Session initiation protocol,”
RFC 3261, Internet Engineering Task Force, 2002.

[6] Handley, M., Jacobson, V., Perkins, C., “SDP: Session Description
Protocol,” RFC 4566, Internet Engineering Task Force, 2006.

[7] Papadakis, A. E., Chaniotakis, E .S. ,Giannakakis, P. E., Tselikas, N. D.,
Venieris, I., “Parlay-based service provision in circuit- and packet-
switched telecommunications networks,” International Journal of
Communication Systems, Vol. 17, Issue 1, 2004, pp. 63-83, doi:
10.1002/dac.631.

[8] Ericsson Jambala Parlay SCS, at: www.ericsson.com
[9] Nokia Siemens Parlay@vantage:http://www.nokiasiemensnetworks.com
[10] Alcatel 8601 Parlay/OSA Gateway, at: www.alcatel.com
[11] AePONA Causeway, at www.aepona.com
[12] SUN jNETx OSA Platform at www.sun.com
[13] Moerdijk, A. & Klostermann, L., “Opening the networks with

OSA/Parlay APIs: Standards and aspects behind the APIs,” IEEE
Network Magazine, Vol. 17, Issue 3, May/June 2003, pp. 58-64, doi:
10.1109/MNET.2003.1201478.

[14] Tselikas, N. D., Dellas, N. L., Koutsoloukas, E., Kapellaki, S.,
Prezerakos, G. N., Venieris, I., “Distributed service provision using open
APIs-based middleware: "OSA/Parlay vs. JAIN" performance
evaluation study,” Journal of Systems and Software Vol. 80, Issue 5,
May 2007, pp 765-777, doi:10.1016/j.jss.2006.06.035.

[15] Stefano, C., Heikki, H., Oskari, K. , “Performance enhancing proxies for
Java2 RMI over slow wireless links,” Second International Conference
and Exhibition on The Practical Application of Java (PA JAVA2000),
12-14 April 2000, Manchester, UK, pp. 76-89.

37

