
Overview Of SDR Platforms Based On Open
Source Software: A 5G System Emulation With

Open Air Interface

Emmanouil-Zafeirios G. Bozis
Department of Informatics and

Telecommunications
University of Peloponnese

Tripolis, Greece
mbozis@go.uop.gr

Michael C. Batistatos
Department of Informatics and

Telecommunications
University of Peloponnese

Tripolis, Greece
mbatist@uop.gr

Nikos C. Sagias
Department of Informatics and

Telecommunications
University of Peloponnese

Tripolis, Greece
 nsagias@uop.gr

Abstract—Τhis paper focuses on the latest trends on
software defined radio platforms based on open source
software and aims to highlight the benefits that these platforms
offer in terms of flexibility and cost. The requirements of
hardware and the special features of operating systems that
enable the SDR software to run on x86-64 systems are
presented in detail. Moreover an emphasis is given to the
software architectures used in open source projects
implementing wireless protocols. As a paradigm of an open
source SDR platform we emulate a 5G system, based on Open
Air Interface software and docker engine, installed on a Linux
PC. Finally, the main aspects of this emulation are presented
and conclusions are made.

Keywords—Software Defined Radio, 5G, open source
software, GNU Radio, Open Air Interface

I. INTRODUCTION

For years the implementation of wireless systems in
proprietary software and hardware platforms was an obstacle
for academia that wanted to experiment on existing and new
wireless systems. The introduction of new projects based on
open source software and general purpose computers
connected to commodity Software Defined Radios (SDR)s,
made possible the implementation of fully reconfigurable
wireless systems. SDR hardware used in conjunction with
open source software like Linux OS and GNU Radio can
synthesize a powerful wireless testbed that facilitates the
development and testing of new systems. The host PC
running the software is connected to SDR hardware via the
USB or ethernet port. GNU Radio supports many SDRs,
ranging from low cost devices like RTL-SDR [1], HackRF
One [2] to more advanced and higher cost devices like
bladeRF [3] and Ettus Research USRP [4].

Furthermore the Open Air Interface (OAI) open source
software implements the 4G and 5G 3GPP protocols and it
can run on commodity computers. The OAI Radio Access
Network (OAI RAN) is capable of transmitting and receiving
LTE and 5G waveforms with higher cost SDR devices like
the USRP B and N series. All baseband signal processing is
done in a general purpose x86-64 CPU. Thus it is possible to
develop a complete 5G system for private networks or
research with commodity hardware and open source
software. The development of this system depends heavily on
computing technologies like low latency Linux kernels,
virtualization, cloud computing and the respective open
source software solutions. In the context of the ongoing
convergence of wireless communications and computer
technologies, it is expected that new open source projects in

this field will come out in future. The Linux ecosystem offers
flexibility for the development of SDR applications, as there
is a plethora of software tools, libraries and code available
for the OS. The user can implement a wireless system using
all the existing software with no additional cost apart from
the cost of hardware. In addition open source software can
even be connected to proprietary software and hardware,
implementing a part of the system's functionality. Moreover,
the GNU Radio environment and SDR hardware provide a
practical view for the teaching of theoretical subjects like
Communication theory and signal processing to university
students. Reference [5] is an alternative methodology in
teaching subjects related to signal processing, based on GNU
Radio and HackRF One SDR device.

Chapter II presents an overview of SDR platforms based
on open source software, chapter III discusses a proposed
experimental testbed for 5G system and chapter IV concludes
the paper summarizing the results.

II. OPEN SOURCE SDR PLATFORMS

A. The GNU Radio Platform

GNU Radio is a free and open-source software
development toolkit for implementing software radios using
signal processing blocks [6]. The developer can use all
existing blocks or write new ones in C++ or python language
using the software libraries and the underlying framework
that connects the signal processing blocks, known as the
scheduler. GNU Radio Companion (GRC), the graphical
User Interface (GUI) of GNU Radio, helps users in the
creation of flow graphs that control the flow of data streams
among blocks. The scheduler is the most complicated part of
the code base, and it is mainly responsible for the
synchronous execution of flowgraph by handling buffered
data and their transport from one block to the next, satisfying
the block’s input/output requirements. The scheduler’s role is
to help users in the most difficult to program tasks. Thus,
users are mainly concerned with writing the code of the
block that processes input data and not with the difficult task
of transfering data from one block to another synchronously.
The existing blocks cover a wide range of signal processing
operations, like filtering, FFT transformation, mixing with
other signals and interfacing to external SDR hardware. The
flow of data starts from the block that has no input called
source and ends to the block which has no output called sink.
Users can create blocks either as embedded to flowgraphs or
as out of tree (OOT) modules that can be imported to other
GNU Radio installations. The mathematical operations done

979-8-3503-9958-5/22/$31.00 ©2022 IEEE

20
22

 P
an

he
lle

ni
c

C
on

fe
re

nc
e

on
 E

le
ct

ro
ni

cs
 &

 T
el

ec
om

m
un

ic
at

io
ns

 (P
A

C
ET

) |
 9

79
-8

-3
50

3-
99

58
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

PA
C

ET
56

97
9.

20
22

.9
97

63
73

Authorized licensed use limited to: University of Peloponnisos. Downloaded on April 26,2023 at 12:54:31 UTC from IEEE Xplore. Restrictions apply.

are accelerated by Single Instruction Multiple Data (SIMD)
parallel processing. The Vector-Optimized Library of
Kernels (VOLK) [7] is used to execute SIMD instructions.
This library offers a layer of abstraction between the calling
function in GNU Radio code and the SIMD code which is
specific to the platform/architecture it is being executed in.

While the GNU Radio software can be installed easily on
a Linux PC, the installation of the SDR source and sink
blocks was a difficult task until recently, mainly due to the
existence of different versions of prerequisite software
packets in different Linux distributions. PyBOMBS [8], a
separate python application can be used in order to overcome
the difficulty of installing all software modules like gr-
osmosdr in PCs with different versions of software libraries
and hardware setup. PyBOMBS detects the user's Operating
System and loads all of the prerequisites in the first stage of
the build. Then it builds GNU Radio, UHD, and various Out
of Tree (OOT) modules from source. The installation is done
into a specified user directory rather than in the system paths
which caused problems in different linux distributions and
software setups. In the current release of Gnu Radio software
(3.10 at the time of writing this paper), support for SDRs is
made easier with the inclusion of gr-soapy as an in-tree
module. This module offers source and sink blocks that
support most of the SDR devices, like the AirspyHF,
BladeRF, HackRF, LimeSDR, PLUTO, RTLSDR and
SDRPlay. Since it is a part of GNU Radio code base, the
installation doesn’t require any configuration to adapt to the
OS environment.

B. Open Air Interface Platform

OpenAirInterface (OAI) is an open source
implementation of Radio Access Network (RAN) and Core
Network (CN) that gathers a worldwide community of
developers who work together to build wireless cellular
technologies [9]. OAI is a complete platform for cellular
system development as it offers a 4G and Standalone (SA)
and Non-Standalone (NSA) 5G stack implementation,
compliant to 3GPP standards. OAI includes the CN, RAN
and the user equipment (UE). The software supports specific
SDR hardware having high speed connectivity to PC through
USB 3.0 or ethernet 10 Gbps ports. Among the supported
devices are USRP B210, USRP X310, USRP N310 and
EURECOM EXPRESSMIMO2 RF card. The hardware
requirements of OAI software are high especially in the 5G
case. A minimum configuration includes a PC with an Intel
core i5 or higher processor with eight or more cores, RAM
size of 16 Gbytes and a 10 Gbps network adapter. Currently
only Intel processors are supported but in the future other
processors are likely to be supported.

The real-time baseband processing in 4G and 5G systems
is demanding in computational resources. In order to run the
OAI software in a general purpose computer different
approaches in system configuration must be taken, like in the
CPU operating mode, the Linux kernel, the CPU SIMD
instructions and the use of OS level virtualization software.
Regarding the CPU operating mode, processor C-States and
P-States must be disabled, to keep the CPU frequency stable,
by configuring accordingly the BIOS and OS parameters on
the host PC. The processor must be always active (C0 state)
minimizing the possible latency in the instruction execution.
An unwanted consequence of this configuration is the
increase in power consumption and thermal dissipation of the
CPU. Furthermore, hyperthreading mode must be disabled,
since OAI needs to have direct access to the physical CPU
cores. In hyperthreading mode the physical cores are divided

to logical cores that are treated as if they are actually physical
ones by the operating system. Higher layers of the 4G/5G
protocol stack like RLC and PDCP use the OAI Inter Task
Interface (ITTI) as a full framework to implement an infinite
loop on events with inter-thread communication. Lower
layers like 5G RLC make direct use of the POSIX thread
API. The host PC running the OAI RAN, should have a low
latency Linux kernel installed and running. The low latency
kernels contain OS level optimizations to achieve the lowest
possible latency for time-critical applications like signal
processing. The installation of the RAN can not be done in a
Virtual Machine (VM), because in a VM the communication
through the host ports (ethernet or usb) with the SDR
hardware cannot support constant high speed bit rates. This is
not the case for the core network (CN), which can run in a
VM with a generic Linux kernel. Thus the complete 5G node
can be installed in a single host containing a VM for the CN.
OAI is compatible only with Intel CPUs, because the
optimized DSP functions use SIMD instructions (SSE, SSE2,
SSS3, SSE4, and AVX2 versions) that are processor
architecture dependent. The software has been tested on Intel
i5, i7, Atom and Xeon CPUs. The OAI 5G core network
(5GC) is designed with a service-oriented architecture which
is adapted to the new service-based architecture (SBA)
defined by 3GPP. The network functions (NFs) are separate
components that provide services to other NFs and
concurrently consume services from them. Additionally, the
Control Plane (CP) functions are separated from the User
Plane (UP). OS-level virtualization allows the NFs to run on
a host as containers which are isolated user space instances.
Docker is one of the existing platforms for using containers
to build, share and run applications and it is used in the 5G
system emulation presented in the next section.

The use of OAI is mainly for experimentation and
research and there is no application so far in Mobile Private
Networks (MPN). This is related to the fact that general
purpose computers are not as power efficient as other
solutions like FPGAs and do not offer economic scalability
for Mobile Network Operators (MNOs).

III. A CONTAINER BASED 5G SYSTEM EMULATION ON A
SINGLE HOST RUNNING OPEN AIR INTERFACE SOFTWARE

We aim to provide information on building a 5G testbed
were different scenario testing can be facilitated by running
all network services in containers and automating repetitive
tasks using the Linux shell. In [10] an emulation of a LTE
network was made using OAI modules and OAISIM (Open
Air Interface System Emulation). In this paper we extended
the work of [10] to a 5G system emulation using docker
containers and automated this process by executing a bash
script. In a host PC running the OAI software, all
components of the 5G core network can run inside docker
containers as services. In addition to real time operation, OAI
5G RAN includes an RF Simulation mode. The RF simulator
is implemented as an OAI device that replaces the actual RF
board driver. In this mode instead of using SDR hardware for
the transmission and reception of RF signal, the I-Q samples
are being transferred directly from the gNB to nr-UE and
vice versa via the network. It works like an RF board but it
can perform faster or slower than real time depending on
CPU speed. When OAI 5G RAN is using the RF simulator
mode, the requirements for the real time execution can be
relaxed. Thus RAN can be executed inside a deployed
container as a service. The same approach can be followed in
the deployment of the nr-UE. Consequently with the RF
simulator all components of the 5G stack can be executed

Authorized licensed use limited to: University of Peloponnisos. Downloaded on April 26,2023 at 12:54:31 UTC from IEEE Xplore. Restrictions apply.

inside containers. OAI has uploaded the container images of
all NFs to docker hub and provides guidelines on deploying
them from their OAI code repository [11]. In this work we
retrieved all these images from docker hub. The start up of
all images is done with the docker-compose application. The
configuration files in yaml format for docker-compose tool
are also provided in [11]. We installed in our computer the
ubuntu 18.04 LTS OS and all necessary software tools and
libraries. Then we managed to run a full OAI 5G full stack
system emulation in our PC with one nr-UE connected to
gNB as it is depicted in Fig. 1.

In order to automate this process we wrote and executed a
single bash script in our host. All necessary modifications to
the configuration files were made to match the network setup
in our lab. As Fig. 2 shows, the deployment of all containers
is done in one host running docker engine. For each container
one to three virtual Network Interface Controllers (NICs) are
created and IP addresses are assigned.

Furthermore, the public_net and the traffic_net networks are
created in the host. These docker networks use the default
bridge driver, so they can communicate with each other.

Fig. 1. Simulated 5G scenario

The script starts by deploying the containers of the
Network Repository Function (NRF) and mySQL database
server. The startup order of containers is controlled with the
‘depends_on’ property of docker-compose tool. In this way
there is no possibility that a NF tries to connect to another
NF that has not been deployed yet.

Fig. 2. Diagram of docker containers deployment

Authorized licensed use limited to: University of Peloponnisos. Downloaded on April 26,2023 at 12:54:31 UTC from IEEE Xplore. Restrictions apply.

The database keeps the subscribers registration data like
the International Mobile Subscriber Identity (IMSI) and the
Operator Code (OPC). The AMF function retrieves these
data and decides upon a received request from a device to
attach to the network. The decision is based on comparison
of the registration data in the database with the values sent
by UE. Then the other containers of the core network
functions are deployed. These are the Access and Mobility
Management Function (AMF), the Session Management
Function (SMF) and the User Plane Function (UPF). The
external Data Network (EXT-DN) container is used to route
the traffic from the UE to the internet. Between the
successive deployment of containers the script pauses
execution for a few seconds so that the containers have the
necessary time to reach a ‘healthy’ state. The next container
that is deployed is OAI gNB with RF simulator. After the
gNB container is up and running, its connection to the AMF
function is checked by examining the log of the AMF
container. Then the nr-UE container is deployed and the
connection of nr-UE to gNB is checked by executing the
ifconfig command. The execution of this command reveals
if the network interface oaitun-ue1 is in up state. This
interface is created after the UE has successfully connected
to gNB and all UE data is transferred through this tunnel.

TABLE I. RTT VALUES OF PING COMMAND

Network / IP Description RTT (ms)

etht0
(192.168.71.137)

connected to lab network via
docker bridgea 0,342

oaitun_ue1
(12.1.1.129)

created by OAI to transport
the UE data to 5G network
through the GTP tunnela

6,374

a. See Fig. 2

In order to check the network connectivity through the
5G protocol stack we executed in the nr-UE container ten
successive ping commands to the central lab router’s IP using

the already created oaitun_ue1 interface. We compared the
mean value of round-trip-time (RTT) to the value we got
executing the ping command using the network interface that
is connected to docker bridge (see Fig. 2). The values of RTT
are shown in table I. This RTT value is relative to the CPU
speed of the host computer running OAI software, because in
RF simulator mode the code execution can be done at
different speeds. For this reason we didn’t take further
measurements on throughput, as they would not be accurate
for a 5G system that carries out baseband processing in real
time.

During the 5G system emulation, we captured the packets
through the public_net network with tshark tool. Then we
used the wireshark software to analyze the captured packets.
We applied a specific filter to display the part of network
traffic that is related to 5G protocols and the PING
command. Fig. 3 shows a screenshot of the wireshark
program displaying captured packets of interest. The first two
packets use NG Application Protocol (NGAP) to exchange
messages from gNB to AMF for the establishment of the NG
Interface. The successful registration of UE to 5G network is
seen in the packet exchange from gNB to AMF using the
Non-Access-Stratum protocol for 5G System (NAS-5GS). In
the captured packets there are also the HeartBeat Request and
HeartBeat Response messages exchanged between the SMF
and UPF function using the Packet Forwarding Control
Protocol (PFCP). The successful execution of ping
commands is also noticeable as an exchange of Internet
Control Message Protocol (ICMP) packets. When the ping
command is executed using the oaitun_ue1 interface the
respective ICMP packets are encapsulated in GPRS
Tunnelling Protocol (GTP) used as a tranport tunnel for UE
data. On the contrary, the ICMP packets created by the ping
command using the docker network interface are not
encapsulated in GTP as it can be seen in the protocol column
in Fig 3.

Fig. 3. Captured packets analyzed with Wireshark network protocol analyzer

Authorized licensed use limited to: University of Peloponnisos. Downloaded on April 26,2023 at 12:54:31 UTC from IEEE Xplore. Restrictions apply.

IV. CONCLUSIONS

Open source SDR platforms have significant benefits as
they are fully reconfigurable, have lower cost and greater
flexibility compared to closed source software solutions. The
developer can quickly carry out the programming tasks and
configuration necessary to support many existing protocols
or to experiment with new ones. In the 5G system emulation
with OAI software we had an insight into 5G protocols
implementation. We provided information on building a 5G
testbed were different scenario testing can be facilitated by
running all network services in containers and automating
this process using the Linux shell. Furthermore with the help
of other open source tools, we managed to analyze the
network traffic and control messages exchanged between the
5G NFs.

REFERENCES

[1] RTL-SDR, https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr,
Accessed Sep 1, 2022.

[2] HackRF One, https://greatscottgadgets.com/hackrf/one/, Accessed
Sep 1, 2022.

[3] BladeRF, https://www.nuand.com/bladerf-2-0-micro/, Accessed Sep
1, 2022.

[4] USRP Product selector, https://www.ettus.com/products/usrp-product-
selector, Accessed Sep 1, 2022.

[5] Del Barrio AA, Manzano JP, Maroto VM, et al. HackRF + GNU
Radio: A software-defined radio to teach communication theory. The
International Journal of Electrical Engineering & Education.
2019;0(0). doi:10.1177/0020720919868144

[6] About GNU Radio, https://www.gnuradio.org/about/, Accessed Sep 1,
2022.

[7] Volk Library Guide, https://wiki.gnuradio.org/index.php?
title=VOLK_Guide, Accessed Sep 1, 2022.

[8] PyBombs, https://github.com/gnuradio/pybombs, Accessed Sep 1,
2022.

[9] Open Air Interface, https://openairinterface.org/about-us/, Accessed
Sep 1, 2022.

[10] Nahum, Cleverson & Soares, José & Batista, Pedro & Klautau,
Aldebaro. (2017). Emulation of 4G/5G Network Using
OpenAirInterface. 10.14209/sbrt.2017.247.

[11] OAI full stack 5G NR RF simulation with containers,
https://gitlab.eurecom.fr/oai/openairinterface5g/-/tree/develop/ci-
scripts/yaml_files/5g_rfsimulator.

Authorized licensed use limited to: University of Peloponnisos. Downloaded on April 26,2023 at 12:54:31 UTC from IEEE Xplore. Restrictions apply.

